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Introduction

» Finite Rate of Innovation (FRI) sampling enables efficient
reconstruction of sparse signals

» FRI models allow sub-Nyquist sampling

» FRI signals appear in applications such as:

» Radar, LIDAR, OCT (Optical Coherence Tomography), EEG,
ECG, Medical imaging, Source localization

» FRI signals have linear combinations of delayed, scaled versions

of a known pulse

» Goal: Estimate amplitudes and delays from a few noisy
measurements



FRI Signal Model

» Consider signals of the form:

L
F(t) =Y arh(t—m)
(=1

where:
> h(t): known FRI pulse
> a,: amplitudes in [amin, amax)
» 74 delays in [Tmin, Tmax], sorted
» Known model order: L
» h(t) has compact support: [Th min, Thmax)
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Figure 1: FRI signal setup



Need for Filtering
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Direct sampling of f(t) requires high rate when h(t) is
wideband

Solution: Use a sampling kernel g(t) with larger support
Convolution with g(t) broadens f(t) and reduces required
sampling rate

Enables sub-Nyquist sampling of f(t)
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Figure 2: Filtering enables lower-rate sampling



Sum-of-Exponentials Model and Recovery

» Filtered samples — linear measurements:
L
z(m)=> byuf, m=0,....M-1
(=1

» Requires M > 2L for exact recovery
> Uy = /07t (example)
» Recovery methods:

» Annihilating filter, ESPRIT, Matrix Pencil, etc.
» Sensitive to noise



Noise Robustness and Resolution

» Classical methods degrade in noise, especially at small Ar:

AT = mein |Te+1 — T

» Denoising techniques (e.g., Cadzow) used before parameter
recovery

» Increasing the number of samples improves noise-robustness

» Sequential methods reduce complexity but have low resolution
(depends on the filter decay)



Learning-Based Approaches

» Joint filter design + recovery via learning
» Learning-based reconstruction of FRI signals (Leung et al.):
» Uses autoencoder for off-grid recovery
» First training step - Trains the encoder to predict locations
» Second training step - Trains the encoder (with frozen decoder
for known kernel) to jointly optimize location prediction and
signal reconstruction
» Improves resolution and noise robustness

» Still relies on exponential-generating kernels



Proposed Framework

» FRI signal f(t) is filtered with a learnable kernel gy(t)

» Samples yg = (f * gg)(t)
» A deep encoder Ey estimates the time delays:

7 = Ep(ye)

» Amplitudes are then estimated separately using ¥ and yg
(similar to least-squares learning)
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Figure 3: Flowchart



Training the Encoder

v

Fix kernel parameters 6
» Train encoder using database Dirain = {ys,i, 7',-},{:1

» Optimization objective:

I
min > lmi = Elve,)lI?
i=1

v

Choice of p =1 or 2 for loss

» We empirically found out that the L1-loss works better than
the L2-loss probably because it induces sparsity



Joint Learning of Kernel and Encoder

» Learn both 6 and ¢ jointly:

I
min > lri = Eglye.)lI5
=1
» Backpropagation used to update both:

¢(k+1) — ¢(k) _ 77¢Zv¢[’i

okt = g(k) — nQngﬁ



Amplitude Estimation
> Amplitudes estimated after delay prediction:

N
R .1 . A 2
a=arg maln N nz_; 19(nTs;a, 7, 80) — yoln]|
» Solved via gradient descent (We use the Adam optimizer):
alk ) = (k) _ 7, Lyse(a@)

» Separating delay and amplitude recovery improves accuracy
and stability (while allowing the parameter size of the model to
be reduced significantly)
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Figure 4: Block diagram



Learning Reconstruction with Arbitrary Kernels

Goal:

» Learn signal reconstruction methods from samples generated
using arbitrary kernels

» We demonstrate that Sum of Exponentials (SoE) generation is
not necessary for accurate reconstruction

Approach:

» We used truncated Gaussian / Gaussian pair as sampling
kernels (these are even used as initialization of the learnable
kernel)

» Avoided SoE-based reconstruction to circumvent instability
issues in noisy settings

Comparison:
» Benchmarked against FRIED-Net



FRI Data Generation
Signal Model:
> f(t) = Zé:l apd(t — 7¢) (stream of Diracs)
> a, ~U[0.5,10], 7 ~ U[—0.476,0.5231]

Sampling Setup:
» Convolve with compactly supported kernel gg(t)
» Sample uniformly over [-0.9,0.9] with T, = 0.086 (N =21
samples)
» Kernel support: [Tz min, Tg,max] = [—0.3,0.3]

Key Differences from FRIED-Net:
» FRIED-Net uses a kernel spanning the full observation window
» Our truncated kernel avoids boundary interference and
enhances robustness

Additional Experiments:
» Low-rate Sampling: T, =0.16, N = 11 samples
» Higher Pulse Counts: L =5and L =10



Kernel Types Evaluated

Truncated Gaussian Kernel
2
t’

g(t)y=e2s2, te€[-0.3,073]

» Empirically: 0 > T5/2 is effective (best results for o = T,/2)

Gaussian Pair Kernel
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g(t) =Ae 202 4 Be 252

» Improves resolution for closely spaced pulses
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Results: Comparison with FRIED-Net

» Objective: Evaluate resolution performance under varying
noise levels
> Baseline: FRIED-Net [5]
> Uses eMOMS kernel with infinite support over [—0.476,0.5231]
» Ours: Compact kernels (Gaussian, narrow Gaussian, Gaussian
pair) with support [—0.3,0.3]
» Same number of samples N = 21, different sampling intervals:

» FRIED-Net: T, = 0.047
» Qurs: T, =0.086

» Wider observation window: [—0.9,0.9]



Key Results: Gaussian Kernels
Gaussian Kernel (o = Ts)

» Balances smoothness and resolution
» 5-7 dB improvement at A7 = 0.05 vs. FRIED-Net (high SNR)

Narrow Gaussian (0 = T5/2)

» Improves resolution for closely spaced pulses
> Average 6 dB gain at A7 = 0.05 (25-40 dB SNR)
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Key Results: Gaussian Pair Kernel

» Best overall performance across settings
» Dual peaks enhance local sensitivity
» Robust to noise; 7-8 dB gain at A7 = 0.05

> Resolves closely spaced pulses more effectively than FRIED-Net
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Kernel

>

Parameterization

The sampling kernel gy(t) is parameterized using first-order
B-spline basis functions:

go(t) = EK: ¢ b1 (t_TkT>

k=—K

The first-order B-spline 31(t) is defined as:

Ba(t) = {1— It if ] < 1,

0 otherwise

This construction results in a piecewise linear kernel with
compact support

The kernel is learnable, and the model can adapt its shape
during training



Training Method for Jointly Learned Kernel

» Two training configurations:
1. Learned Kernel Initialized with Smooth Function:
» Kernel coefficients are initialized with a smooth function
» Optimized with ¢2-norm loss
2. Learned Kernel Initialized with Gaussian Function:
> Kernel initialized to approximate a Gaussian function
» Optimized with £1-norm loss for robustness to outliers
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Results
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Figure 7: Smooth Initialization
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Resolution Analysis

» Test on 1000 examples focusing on pulse separation
(AT = 0.05 to 0.8)

» FRIED-Net uses an eMOMS kernel with full observation
window [—0.476,0.5231]

» Our method uses compactly supported learned kernels with
support [—0.3,0.3]
» Performance improvement:

» 5-7 dB NMSE improvement for smooth-initialized kernel

» Up to 9 dB improvement with Gaussian-initialized kernel at
higher SNRs

» Conclusion: The joint learning framework enhances resolution,
even with compact kernels



Generalization Accuracy

» Tested on 1000 randomly generated FRI signals

» Performance compared in terms of NMSE for time delay (k)
and amplitude (ax) estimation
» Learned Gaussian kernel outperforms fixed kernels in both time
delay and amplitude estimation
» At low SNRs (15 dB), the learned Gaussian kernel shows:
» 3-4 dB gain in t, estimation
» 2-3 dB gain in aj, estimation
» Conclusion: Learned kernel provides superior generalization
and accuracy across various signal conditions



Reduced Sampling Rate

» Evaluated learned kernel initialized with a Gaussian function
under reduced sampling rate (N = 11)

» Despite halving the sampling rate, the model performs well,
with only a 6-8 dB degradation in NMSE compared to N = 21

» Performance surpasses several fixed-kernel approaches at
N =21

» Conclusion: The framework is robust under sparse sampling,
making it suitable for resource-constrained applications



Hardware Implementation

> \We investigate the practical implementation of the learned
kernel using a 2-pole system

» The pole and gain values are optimized for accurate location
reconstruction
» Emphasis on maximizing the pole magnitude governing
exponential decay:
» Results in less spread-out kernels, improving resolution
accuracy
» Simplifies hardware realization
» In the lab, a synthetic pipeline is followed:
» Discrete samples fed to DAC to generate a continuous analog
signal
» Signal passed through filter, then captured by ADC
» Captured signal is fed to the model as input

» Conclusion: The learned kernel paradigm enables the synthesis
of optimal kernels, achieving excellent reconstruction accuracy



Filter Specifications

» All previous simulations use Dirac impulses for FRI signal
generation, but practical signal generators can only generate
pulses with finite bandwidth. Thus, we chose the FRI pulse
bandwidth to be 1 kHz

> We design a 2-pole Opamp-based filter and achieve
comparable performance to a learnable filter with no specific
design requirements (around 5-6 dB performance drop)

The filter can be represented as follows -

M) =6+ 53: +5) ®
h(t) = a (e‘ﬁlt — e‘ﬁzt) = Tal_azﬂl (e‘ﬁlt — e‘ﬁzt) (2)

BZfél = 3.68, §1 = 43.53, B> = 61.07



Filter responses

Magnitude Response
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Figure 9: Time domain response Figure 10: Frequency response



Comparison of hardware realization with Simulated kernel

Frequency Response
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