Learnable kernel-based FRI reconstruction Bachelor Thesis Project 2

Omkar Nitsure Guide: Prof. Satish Mulleti

Electrical Engineering, IIT Bombay

May 2, 2025 Github Link:

 $https://github.com/omkar-nitsure/Learnable_kernel_FRI/tree/main\\$

Introduction

- ► Finite Rate of Innovation (FRI) sampling enables efficient reconstruction of sparse signals
- FRI models allow sub-Nyquist sampling
- FRI signals appear in applications such as:
 - Radar, LIDAR, OCT (Optical Coherence Tomography), EEG, ECG, Medical imaging, Source localization
- FRI signals have linear combinations of delayed, scaled versions of a known pulse
- Goal: Estimate amplitudes and delays from a few noisy measurements

FRI Signal Model

Consider signals of the form:

$$f(t) = \sum_{\ell=1}^{L} a_{\ell} h(t - \tau_{\ell})$$

where:

- \blacktriangleright h(t): known FRI pulse
- $ightharpoonup a_{\ell}$: amplitudes in $[a_{\min}, a_{\max}]$
- $ightharpoonup au_{\ell}$: delays in $[au_{\min}, au_{\max}]$, sorted
- Known model order: L
- \blacktriangleright h(t) has compact support: $[T_{h,\min}, T_{h,\max}]$

Figure 1: FRI signal setup

Need for Filtering

- ▶ Direct sampling of f(t) requires high rate when h(t) is wideband
- ▶ Solution: Use a sampling kernel g(t) with larger support
- Convolution with g(t) broadens f(t) and reduces required sampling rate
- ▶ Enables sub-Nyquist sampling of f(t)

Figure 2: Filtering enables lower-rate sampling

Sum-of-Exponentials Model and Recovery

► Filtered samples → linear measurements:

$$z(m) = \sum_{\ell=1}^{L} b_{\ell} u_{\ell}^{m}, \quad m = 0, \dots, M-1$$

- ▶ Requires $M \ge 2L$ for exact recovery
- $ightharpoonup u_{\ell} = e^{j\omega_0 au_{\ell}} ext{ (example)}$
- Recovery methods:
 - Annihilating filter, ESPRIT, Matrix Pencil, etc.
 - Sensitive to noise

Noise Robustness and Resolution

lacktriangle Classical methods degrade in noise, especially at small $\Delta \tau$:

$$\Delta au = \min_{\ell} | au_{\ell+1} - au_{\ell}|$$

- Denoising techniques (e.g., Cadzow) used before parameter recovery
- Increasing the number of samples improves noise-robustness
- Sequential methods reduce complexity but have low resolution (depends on the filter decay)

Learning-Based Approaches

- Joint filter design + recovery via learning
- Learning-based reconstruction of FRI signals (Leung et al.):
 - Uses autoencoder for off-grid recovery
 - First training step Trains the encoder to predict locations
 - Second training step Trains the encoder (with frozen decoder for known kernel) to jointly optimize location prediction and signal reconstruction
 - Improves resolution and noise robustness
- Still relies on exponential-generating kernels

Proposed Framework

- ▶ FRI signal f(t) is filtered with a learnable kernel $g_{\theta}(t)$
- ► Samples $y_{\theta} = (f * g_{\theta})(t)$
- ▶ A deep encoder E_{ϕ} estimates the time delays:

$$\hat{oldsymbol{ au}} = E_{oldsymbol{\phi}}({\sf y}_{oldsymbol{ heta}})$$

Amplitudes are then estimated separately using $\hat{\tau}$ and y_{θ} (similar to least-squares learning)

(a)
$$f(t) = \sum_{\ell=1}^{L} a_{\ell} h(t - \tau_{\ell}) \rightarrow \underbrace{g(t)}_{T_{s}} \underbrace{y(nT_{s})}_{y(nT_{s})} \underbrace{Parameter}_{Estimator} \rightarrow \{a_{\ell}, \tau_{\ell}\}_{\ell=1}^{L}$$

Figure 3: Flowchart

Training the Encoder

- ightharpoonup Fix kernel parameters heta
- ► Train encoder using database $\mathcal{D}_{train} = \{y_{\theta,i}, \tau_i\}_{i=1}^I$
- Optimization objective:

$$\min_{\phi} \sum_{i=1}^{I} \|\boldsymbol{\tau}_i - \boldsymbol{E}_{\phi}(\mathbf{y}_{\boldsymbol{\theta},i})\|_{p}^{p}$$

- ▶ Choice of p = 1 or 2 for loss
- ► We empirically found out that the L1-loss works better than the L2-loss probably because it induces sparsity

Joint Learning of Kernel and Encoder

Learn both θ and ϕ jointly:

$$\min_{\boldsymbol{\theta}, \boldsymbol{\phi}} \sum_{i=1}^{I} \| \boldsymbol{\tau}_i - \boldsymbol{E}_{\boldsymbol{\phi}}(\mathbf{y}_{\boldsymbol{\theta}, i}) \|_p^p$$

► Backpropagation used to update both:

$$egin{aligned} oldsymbol{\phi^{(k+1)}} &= oldsymbol{\phi^{(k)}} - \eta_{\phi} \sum_{i}
abla_{\phi} \mathcal{L}_{i} \ oldsymbol{ heta^{(k+1)}} &= oldsymbol{ heta^{(k)}} - \eta_{ heta} \sum_{i}
abla_{ heta} \mathcal{L}_{i} \end{aligned}$$

Amplitude Estimation

► Amplitudes estimated after delay prediction:

$$\hat{\mathbf{a}} = \arg\min_{\mathbf{a}} \frac{1}{N} \sum_{n=1}^{N} |\hat{y}(nT_s; \mathbf{a}, \hat{\boldsymbol{\tau}}, g_{\boldsymbol{\theta}}) - \mathbf{y}_{\boldsymbol{\theta}}[n]|^2$$

▶ Solved via gradient descent (We use the Adam optimizer):

$$\mathsf{a}^{(k+1)} = \mathsf{a}^{(k)} - \eta \nabla_{\mathsf{a}} \mathcal{L}_{\mathsf{MSE}}(\mathsf{a}^{(k)})$$

 Separating delay and amplitude recovery improves accuracy and stability (while allowing the parameter size of the model to be reduced significantly)

Figure 4: Block diagram

Learning Reconstruction with Arbitrary Kernels

Goal:

- ► Learn signal reconstruction methods from samples generated using arbitrary kernels
- We demonstrate that Sum of Exponentials (SoE) generation is not necessary for accurate reconstruction

Approach:

- We used truncated Gaussian / Gaussian pair as sampling kernels (these are even used as initialization of the learnable kernel)
- Avoided SoE-based reconstruction to circumvent instability issues in noisy settings

Comparison:

► Benchmarked against FRIED-Net

FRI Data Generation

Signal Model:

- $f(t) = \sum_{\ell=1}^{L} a_{\ell} \delta(t \tau_{\ell})$ (stream of Diracs)
- ► $a_{\ell} \sim \mathcal{U}[0.5, 10], \quad \tau_{\ell} \sim \mathcal{U}[-0.476, 0.5231]$

Sampling Setup:

- ightharpoonup Convolve with compactly supported kernel $g_{\theta}(t)$
- Sample uniformly over [-0.9, 0.9] with $T_s = 0.086$ (N = 21 samples)
- ► Kernel support: $[T_{g,min}, T_{g,max}] = [-0.3, 0.3]$

Key Differences from FRIED-Net:

- ► FRIED-Net uses a kernel spanning the full observation window
- Our truncated kernel avoids boundary interference and enhances robustness

Additional Experiments:

- ▶ Low-rate Sampling: $T_s = 0.16$, N = 11 samples
 - ▶ Higher Pulse Counts: L = 5 and L = 10

Kernel Types Evaluated

Truncated Gaussian Kernel

$$g(t) = e^{-\frac{t^2}{2\sigma^2}}, \quad t \in [-0.3, 0.3]$$

▶ Empirically: $\sigma \ge T_s/2$ is effective (best results for $\sigma = T_s/2$)

Gaussian Pair Kernel

$$g(t) = Ae^{-\frac{(t+t_1)^2}{2\sigma^2}} + Be^{-\frac{(t+t_2)^2}{2\sigma^2}}$$

► Improves resolution for closely spaced pulses

Results: Comparison with FRIED-Net

- Objective: Evaluate resolution performance under varying noise levels
- Baseline: FRIED-Net [5]
 - ▶ Uses eMOMS kernel with infinite support over [-0.476, 0.5231]
- ▶ Ours: Compact kernels (Gaussian, narrow Gaussian, Gaussian pair) with support [-0.3, 0.3]
- Same number of samples N = 21, different sampling intervals:
 - FRIED-Net: $T_s = 0.047$
 - Ours: $T_s = 0.086$
- \blacktriangleright Wider observation window: [-0.9, 0.9]

Key Results: Gaussian Kernels

Gaussian Kernel ($\sigma = T_s$)

- ► Balances smoothness and resolution
- ▶ 5–7 dB improvement at $\Delta \tau = 0.05$ vs. FRIED-Net (high SNR)

Narrow Gaussian ($\sigma = T_s/2$)

- Improves resolution for closely spaced pulses
- Average 6 dB gain at $\Delta \tau = 0.05$ (25–40 dB SNR)

Figure 6: Gaussian $(\sigma = \frac{T_s}{2})$

Key Results: Gaussian Pair Kernel

- Best overall performance across settings
- Dual peaks enhance local sensitivity
- ▶ Robust to noise; 7–8 dB gain at $\Delta \tau = 0.05$
- Resolves closely spaced pulses more effectively than FRIED-Net

Kernel Parameterization

The sampling kernel $g_{\theta}(t)$ is parameterized using first-order B-spline basis functions:

$$g_{\theta}(t) = \sum_{k=-K}^{K} c_k \beta_1 \left(\frac{t - kT}{T} \right)$$

▶ The first-order B-spline $\beta_1(t)$ is defined as:

$$\beta_1(t) = \begin{cases} 1 - |t| & \text{if } |t| \le 1, \\ 0 & \text{otherwise} \end{cases}$$

- This construction results in a piecewise linear kernel with compact support
- ► The kernel is learnable, and the model can adapt its shape during training

Training Method for Jointly Learned Kernel

- Two training configurations:
 - 1. Learned Kernel Initialized with Smooth Function:
 - ► Kernel coefficients are initialized with a smooth function
 - ▶ Optimized with ℓ₂-norm loss

2. Learned Kernel Initialized with Gaussian Function:

- Kernel initialized to approximate a Gaussian function
- ▶ Optimized with ℓ_1 -norm loss for robustness to outliers

Results

Figure 7: Smooth Initialization

Figure 8: Gaussian $(\sigma = \frac{T_s}{2})$

Resolution Analysis

- Test on 1000 examples focusing on pulse separation ($\Delta \tau = 0.05$ to 0.8)
- ► FRIED-Net uses an eMOMS kernel with full observation window [-0.476, 0.5231]
- Our method uses compactly supported learned kernels with support [-0.3, 0.3]
- Performance improvement:
 - ▶ 5–7 dB NMSE improvement for smooth-initialized kernel
 - Up to 9 dB improvement with Gaussian-initialized kernel at higher SNRs
- Conclusion: The joint learning framework enhances resolution, even with compact kernels

Generalization Accuracy

- ► Tested on 1000 randomly generated FRI signals
- Performance compared in terms of NMSE for time delay (t_k) and amplitude (a_k) estimation
- Learned Gaussian kernel outperforms fixed kernels in both time delay and amplitude estimation
- ▶ At low SNRs (15 dB), the learned Gaussian kernel shows:
 - \triangleright 3–4 dB gain in t_k estimation
 - \triangleright 2–3 dB gain in a_k estimation
- Conclusion: Learned kernel provides superior generalization and accuracy across various signal conditions

Reduced Sampling Rate

- ightharpoonup Evaluated learned kernel initialized with a Gaussian function under reduced sampling rate (N=11)
- Despite halving the sampling rate, the model performs well, with only a 6–8 dB degradation in NMSE compared to N=21
- Performance surpasses several fixed-kernel approaches at N = 21
- Conclusion: The framework is robust under sparse sampling, making it suitable for resource-constrained applications

Hardware Implementation

- ► We investigate the practical implementation of the learned kernel using a 2-pole system
- ► The pole and gain values are optimized for accurate location reconstruction
- Emphasis on maximizing the pole magnitude governing exponential decay:
 - Results in less spread-out kernels, improving resolution accuracy
 - Simplifies hardware realization
- In the lab, a synthetic pipeline is followed:
 - Discrete samples fed to DAC to generate a continuous analog signal
 - ► Signal passed through filter, then captured by ADC
 - Captured signal is fed to the model as input
- Conclusion: The learned kernel paradigm enables the synthesis of optimal kernels, achieving excellent reconstruction accuracy

Filter Specifications

- ▶ All previous simulations use Dirac impulses for FRI signal generation, but practical signal generators can only generate pulses with finite bandwidth. Thus, we chose the FRI pulse bandwidth to be 1 kHz
- ▶ We design a 2-pole Opamp-based filter and achieve comparable performance to a learnable filter with no specific design requirements (around 5-6 dB performance drop)

The filter can be represented as follows -

$$H(s) = \frac{a_1 a_2}{(s + \beta_1)(s + \beta_2)} \tag{1}$$

$$h(t) = a \left(e^{-\beta_1 t} - e^{-\beta_2 t} \right) = \frac{a_1 a_2}{\beta_2 - \beta_1} \left(e^{-\beta_1 t} - e^{-\beta_2 t} \right)$$
 (2)

$$\frac{a_1 a_2}{\beta_2 - \beta_1} = 3.68$$
, $\beta_1 = 43.53$, $\beta_2 = 61.07$

Filter responses

Figure 9: Time domain response

Figure 10: Frequency response

Comparison of hardware realization with Simulated kernel

References I

- [1] J. A. Cadzow. "Signal enhancement A composite property mapping algorithm". In: *IEEE Transactions on Acoustics, Speech, and Signal Processing* 36.1 (Jan. 1988), pp. 49–62. ISSN: 0096-3518. DOI: 10.1109/29.1488.
- [2] G. R. DeProny. "Essai experimental et analytique: Sur les lois de la dilatabilité de fluides élastiques et sur celles de la force expansive de la vapeur de l'eau et de la vapeur de l'alcool, à différentes températures". In: J. de l'Ecole polytechnique 1.2 (1795), pp. 24–76.
- [3] Y. Hua and T. K. Sarkar. "Matrix pencil method for estimating parameters of exponentially damped/undamped sinusoids in noise". In: *IEEE Trans. Acoust., Speech and Signal Process.* 38.5 (May 1990), pp. 814–824. ISSN: 0096-3518. DOI: 10.1109/29.56027.

References II

- [4] Diederik P. Kingma and Jimmy Ba. Adam: A Method for Stochastic Optimization. 2017. arXiv: 1412.6980 [cs.LG]. URL: https://arxiv.org/abs/1412.6980.
- [5] Vincent CH Leung et al. "Learning-based reconstruction of FRI signals". In: IEEE Trans. Signal Process. 71 (2023), pp. 2564–2578.
- [6] Satish Mulleti, Haiyang Zhang, and Yonina C Eldar. "Learning to sample: Data-driven sampling and reconstruction of FRI signals". In: *IEEE Access* 11 (2023), pp. 71048–71062.
- [7] A. Paulraj, R. Roy, and T. Kailath. "A subspace rotation approach to signal parameter estimation". In: *Proc. IEEE* 74.7 (1986), pp. 1044–1046. ISSN: 0018-9219. DOI: 10.1109/PROC.1986.13583.

Questions/Suggestions

Thank you!