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Introduction

▶ Finite Rate of Innovation (FRI) sampling enables efficient
reconstruction of sparse signals

▶ FRI models allow sub-Nyquist sampling
▶ FRI signals appear in applications such as:

▶ Radar, LIDAR, OCT (Optical Coherence Tomography), EEG,
ECG, Medical imaging, Source localization

▶ FRI signals have linear combinations of delayed, scaled versions
of a known pulse

▶ Goal: Estimate amplitudes and delays from a few noisy
measurements



FRI Signal Model
▶ Consider signals of the form:

f (t) =
L∑

ℓ=1

aℓ h(t − τℓ)

where:
▶ h(t): known FRI pulse
▶ aℓ: amplitudes in [amin, amax]
▶ τℓ: delays in [τmin, τmax], sorted

▶ Known model order: L
▶ h(t) has compact support: [Th,min,Th,max]

Figure 1: FRI signal setup



Need for Filtering
▶ Direct sampling of f (t) requires high rate when h(t) is

wideband
▶ Solution: Use a sampling kernel g(t) with larger support
▶ Convolution with g(t) broadens f (t) and reduces required

sampling rate
▶ Enables sub-Nyquist sampling of f (t)

Figure 2: Filtering enables lower-rate sampling



Sum-of-Exponentials Model and Recovery

▶ Filtered samples → linear measurements:

z(m) =
L∑

ℓ=1

bℓ u
m
ℓ , m = 0, . . . ,M − 1

▶ Requires M ≥ 2L for exact recovery
▶ uℓ = e jω0τℓ (example)
▶ Recovery methods:

▶ Annihilating filter, ESPRIT, Matrix Pencil, etc.
▶ Sensitive to noise



Noise Robustness and Resolution

▶ Classical methods degrade in noise, especially at small ∆τ :

∆τ = min
ℓ

|τℓ+1 − τℓ|

▶ Denoising techniques (e.g., Cadzow) used before parameter
recovery

▶ Increasing the number of samples improves noise-robustness
▶ Sequential methods reduce complexity but have low resolution

(depends on the filter decay)



Learning-Based Approaches

▶ Joint filter design + recovery via learning
▶ Learning-based reconstruction of FRI signals (Leung et al.):

▶ Uses autoencoder for off-grid recovery
▶ First training step - Trains the encoder to predict locations
▶ Second training step - Trains the encoder (with frozen decoder

for known kernel) to jointly optimize location prediction and
signal reconstruction

▶ Improves resolution and noise robustness

▶ Still relies on exponential-generating kernels



Proposed Framework

▶ FRI signal f (t) is filtered with a learnable kernel gθ(t)
▶ Samples yθ = (f ∗ gθ)(t)
▶ A deep encoder Eϕ estimates the time delays:

τ̂ = Eϕ(yθ)

▶ Amplitudes are then estimated separately using τ̂ and yθ
(similar to least-squares learning)

Figure 3: Flowchart



Training the Encoder

▶ Fix kernel parameters θ

▶ Train encoder using database Dtrain = {yθ,i , τ i}Ii=1
▶ Optimization objective:

min
ϕ

I∑
i=1

∥τ i − Eϕ(yθ,i )∥pp

▶ Choice of p = 1 or 2 for loss
▶ We empirically found out that the L1-loss works better than

the L2-loss probably because it induces sparsity



Joint Learning of Kernel and Encoder

▶ Learn both θ and ϕ jointly:

min
θ,ϕ

I∑
i=1

∥τ i − Eϕ(yθ,i )∥pp

▶ Backpropagation used to update both:

ϕ(k+1) = ϕ(k) − ηϕ
∑
i

∇ϕLi

θ(k+1) = θ(k) − ηθ
∑
i

∇θLi



Amplitude Estimation
▶ Amplitudes estimated after delay prediction:

â = argmin
a

1
N

N∑
n=1

|ŷ(nTs ; a, τ̂ , gθ)− yθ[n]|2

▶ Solved via gradient descent (We use the Adam optimizer):

a(k+1) = a(k) − η∇aLMSE(a(k))

▶ Separating delay and amplitude recovery improves accuracy
and stability (while allowing the parameter size of the model to
be reduced significantly)

Figure 4: Block diagram



Learning Reconstruction with Arbitrary Kernels

Goal:
▶ Learn signal reconstruction methods from samples generated

using arbitrary kernels
▶ We demonstrate that Sum of Exponentials (SoE) generation is

not necessary for accurate reconstruction

Approach:
▶ We used truncated Gaussian / Gaussian pair as sampling

kernels (these are even used as initialization of the learnable
kernel)

▶ Avoided SoE-based reconstruction to circumvent instability
issues in noisy settings

Comparison:
▶ Benchmarked against FRIED-Net



FRI Data Generation
Signal Model:
▶ f (t) =

∑L
ℓ=1 aℓδ(t − τℓ) (stream of Diracs)

▶ aℓ ∼ U [0.5, 10], τℓ ∼ U [−0.476, 0.5231]

Sampling Setup:
▶ Convolve with compactly supported kernel gθ(t)
▶ Sample uniformly over [−0.9, 0.9] with Ts = 0.086 (N = 21

samples)
▶ Kernel support: [Tg ,min,Tg ,max] = [−0.3, 0.3]

Key Differences from FRIED-Net:
▶ FRIED-Net uses a kernel spanning the full observation window
▶ Our truncated kernel avoids boundary interference and

enhances robustness

Additional Experiments:
▶ Low-rate Sampling: Ts = 0.16, N = 11 samples
▶ Higher Pulse Counts: L = 5 and L = 10



Kernel Types Evaluated
Truncated Gaussian Kernel

g(t) = e−
t2

2σ2 , t ∈ [−0.3, 0.3]

▶ Empirically: σ ≥ Ts/2 is effective (best results for σ = Ts/2)

Gaussian Pair Kernel

g(t) = Ae−
(t+t1)

2

2σ2 + Be−
(t+t2)

2

2σ2

▶ Improves resolution for closely spaced pulses
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Results: Comparison with FRIED-Net

▶ Objective: Evaluate resolution performance under varying
noise levels

▶ Baseline: FRIED-Net [5]
▶ Uses eMOMS kernel with infinite support over [−0.476, 0.5231]

▶ Ours: Compact kernels (Gaussian, narrow Gaussian, Gaussian
pair) with support [−0.3, 0.3]

▶ Same number of samples N = 21, different sampling intervals:
▶ FRIED-Net: Ts = 0.047
▶ Ours: Ts = 0.086

▶ Wider observation window: [−0.9, 0.9]



Key Results: Gaussian Kernels
Gaussian Kernel (σ = Ts)
▶ Balances smoothness and resolution
▶ 5–7 dB improvement at ∆τ = 0.05 vs. FRIED-Net (high SNR)

Narrow Gaussian (σ = Ts/2)
▶ Improves resolution for closely spaced pulses
▶ Average 6 dB gain at ∆τ = 0.05 (25–40 dB SNR)
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Figure 5: Gaussian (σ = Ts)
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Figure 6: Gaussian (σ = Ts

2 )



Key Results: Gaussian Pair Kernel

▶ Best overall performance across settings
▶ Dual peaks enhance local sensitivity
▶ Robust to noise; 7–8 dB gain at ∆τ = 0.05
▶ Resolves closely spaced pulses more effectively than FRIED-Net
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Kernel Parameterization

▶ The sampling kernel gθ(t) is parameterized using first-order
B-spline basis functions:

gθ(t) =
K∑

k=−K

ck β1

(
t − kT

T

)
▶ The first-order B-spline β1(t) is defined as:

β1(t) =

{
1 − |t| if |t| ≤ 1,
0 otherwise

▶ This construction results in a piecewise linear kernel with
compact support

▶ The kernel is learnable, and the model can adapt its shape
during training



Training Method for Jointly Learned Kernel
▶ Two training configurations:

1. Learned Kernel Initialized with Smooth Function:
▶ Kernel coefficients are initialized with a smooth function
▶ Optimized with ℓ2-norm loss

2. Learned Kernel Initialized with Gaussian Function:
▶ Kernel initialized to approximate a Gaussian function
▶ Optimized with ℓ1-norm loss for robustness to outliers

0.3 0.2 0.1 0.0 0.1 0.2 0.3
Time

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

Am
pl

itu
de

Learned Kernel(init smooth signal)
Learned Kernel(init gaussian  = Ts / 2)



Results
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Figure 7: Smooth Initialization
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Figure 8: Gaussian (σ = Ts

2 )



Resolution Analysis

▶ Test on 1000 examples focusing on pulse separation
(∆τ = 0.05 to 0.8)

▶ FRIED-Net uses an eMOMS kernel with full observation
window [−0.476, 0.5231]

▶ Our method uses compactly supported learned kernels with
support [−0.3, 0.3]

▶ Performance improvement:
▶ 5–7 dB NMSE improvement for smooth-initialized kernel
▶ Up to 9 dB improvement with Gaussian-initialized kernel at

higher SNRs

▶ Conclusion: The joint learning framework enhances resolution,
even with compact kernels



Generalization Accuracy

▶ Tested on 1000 randomly generated FRI signals
▶ Performance compared in terms of NMSE for time delay (tk)

and amplitude (ak) estimation
▶ Learned Gaussian kernel outperforms fixed kernels in both time

delay and amplitude estimation
▶ At low SNRs (15 dB), the learned Gaussian kernel shows:

▶ 3–4 dB gain in tk estimation
▶ 2–3 dB gain in ak estimation

▶ Conclusion: Learned kernel provides superior generalization
and accuracy across various signal conditions



Reduced Sampling Rate

▶ Evaluated learned kernel initialized with a Gaussian function
under reduced sampling rate (N = 11)

▶ Despite halving the sampling rate, the model performs well,
with only a 6–8 dB degradation in NMSE compared to N = 21

▶ Performance surpasses several fixed-kernel approaches at
N = 21

▶ Conclusion: The framework is robust under sparse sampling,
making it suitable for resource-constrained applications



Hardware Implementation

▶ We investigate the practical implementation of the learned
kernel using a 2-pole system

▶ The pole and gain values are optimized for accurate location
reconstruction

▶ Emphasis on maximizing the pole magnitude governing
exponential decay:
▶ Results in less spread-out kernels, improving resolution

accuracy
▶ Simplifies hardware realization

▶ In the lab, a synthetic pipeline is followed:
▶ Discrete samples fed to DAC to generate a continuous analog

signal
▶ Signal passed through filter, then captured by ADC
▶ Captured signal is fed to the model as input

▶ Conclusion: The learned kernel paradigm enables the synthesis
of optimal kernels, achieving excellent reconstruction accuracy



Filter Specifications

▶ All previous simulations use Dirac impulses for FRI signal
generation, but practical signal generators can only generate
pulses with finite bandwidth. Thus, we chose the FRI pulse
bandwidth to be 1 kHz

▶ We design a 2-pole Opamp-based filter and achieve
comparable performance to a learnable filter with no specific
design requirements (around 5-6 dB performance drop)

The filter can be represented as follows -

H(s) =
a1a2

(s + β1)(s + β2)
(1)

h(t) = a
(
e−β1t − e−β2t

)
=

a1a2

β2 − β1

(
e−β1t − e−β2t

)
(2)

a1a2
β2−β1

= 3.68, β1 = 43.53, β2 = 61.07



Filter responses

Figure 9: Time domain response Figure 10: Frequency response



Comparison of hardware realization with Simulated kernel
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Questions/Suggestions

Thank you!
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