High Resolution Spectral Estimation Bachelor Thesis Project

> Omkar Nitsure Guide: Prof. Satish Mulleti

> Electrical Engineering, IIT Bombay

Nov 25, 2024

Github Link: https://github.com/omkar-nitsure/Data-driven-HRSE/tree/main

Introduction

- Frequency estimation from samples corrupted by noise is a fundamental challenge & has many applications
- Particularly useful in tests used for medical diagnosis like Sonography, Optical Coherence Tomography
- Compute Direction-of-Arrival (DoA), analyze radar data
- Ability to resolve is limited by noise level and number of measurements (resolution limit decreases with higher SNR and more measurements)
- Methods that require fewer samples are highly desirable as acquiring samples is expensive (sometimes inconvenient)

Problem Statement

- Given: Set of samples of a signal acquired through a series of sensors (radar)
- Solve: Spectral composition of the signal
- Assumption: Spectrum non-zero only for 2 frequencies
- Smallest resolution achieved: ¹/₆th of the limit for fourier methods
- Approach: We use a predictor to predict N M future samples given M samples and then use ESPRIT to resolve the frequencies using combined N samples

Figure 1: Block diagram of our approach

Signal Formulae

$$\begin{aligned} x(n) &= \sum_{l=1}^{L} a_l e^{j2\pi f_l n} + w(n), \quad n = 1, \dots, N \\ \text{here, } L &= 2, a_1 = a_2 = 1, w(n) \sim \text{Normal}(0, \sigma^2) \\ \text{SNR} &= 10 \log_{10}(\frac{|x(n)|_2^2}{N\sigma^2}) \end{aligned}$$

Theoretical limit for Fourier-based Techniques

High resolution refers to precision beyond that achievable with the periodogram or Fourier-based methods. This limit is as follows:-

- ► N : Number of samples available through sensors
- Assuming, the signal consists of 2 frequencies f₁ and f₂, they can be successfully resolved using fourier-based/periodogram methods if the separation follows:

$$|f_1-f_2|\geq \frac{1}{N}$$

ESPRIT & MUSIC

- ESPRIT¹ & MUSIC² offer greater robustness and finer resolution than periodogram methods
- Techniques like PSnet³ learn the pseudo-spectrum and perform frequency estimation through peak identification
- Key Insight: estimating frequencies from a pseudo-spectrum is more effective than training a network to estimate frequencies directly

²R. O. Schmidt, "Multiple Emitter Location and Signal Parameter Estimation," IEEE Transactions on Antennas and Propagation, 1986.

³Izacard, Gautier, B. Bernstein, and C. Fernandez-Granda. "A learning-based framework for line-spectra super-resolution.", ICASSP 2019.

¹R. Roy and T. Kailath, "ESPRIT–Estimation of Signal Parameters via Rotational Invariance Techniques," ICASSP, 1989.

Experiment Setup

- We start with M = 50 samples (model input)
- Use machine learning models to predict N M = 100 future samples (model output)
- Concatenate the above 2 to get N = 150 samples
- Use frequency estimation algorithms (ESPRIT) to find frequencies given 150 samples

Purpose

- Due to limited budget of 50 samples we are otherwise restricted to a resolution of ¹/₅₀ using ESPRIT
- \blacktriangleright If the model accuracy is high, we can reduce the resolution limit to $\frac{1}{150}$

Dataset Generation

Considerations

- We want the model to generalize well to a range of frequency separations
- We want the model to perform well even for low SNRs
- We don't want the model to overfit the training data

Solutions

- Make sure that the dataset has reasonable proportions of different resolutions
- Train different models for different SNR ranges
- Generate a large enough dataset with sufficient randomness in different signal parameters

Frequency Selection

We select frequencies from 6 sets to ensure enough diversity. Here $\Delta f = \frac{1}{N}$,

- Set 1: 20000 examples such that $f_1 \sim \text{Uniform}(0, 0.5 \Delta f), f_2 = f_1 + 0.5\Delta f$
- ► Set 2: 20000 examples such that $f_1 \sim \text{Uniform}(0, 0.5 - \Delta f), f_2 = f_1 + \Delta f + \epsilon$ $\epsilon \sim \text{Uniform}(-(f_1 + \Delta f), 0.5 - f_1 - \Delta f)$
- Set 3: 5625 examples where f₁ and f₂ are selected from a grid in the range [0, 0.5]. Grid separation is Δf
- Set 4: 20000 examples such that $f_1 \sim \text{Uniform}(0, 0.5 - \Delta f), f_2 = f_1 + k\Delta f$ $k \in \left[\left[\left(-\frac{f_1}{\Delta_f} \right) \right], \cdots, \left\lfloor \frac{0.5 - f_1}{\Delta_f} \right\rfloor \right]$
- Set 5: 20000 examples such that, $f_1, f_2 \sim \text{Uniform}(0, 0.5 \Delta f)$
- Set 6: 20000 examples such that, $f_1 \sim \text{Normal}(0.25, 0.25)$, $f_2 \sim \text{Uniform}(0, 0.5 \Delta f)$

Model Details

We used 2 model architectures,

- hybrid bidirectional LSTM-CNN
- Transformer-Encoder 0.46 million learnable parameters

Loss function and Evaluation metric

Loss (L):
$$\sum_{i=1}^{l} \|\mathbf{x}_{m,i} - G_{\theta}(\mathbf{x}_{a,i})\|_{2}^{2}$$

Metric: NMSE $= \frac{\frac{1}{K} \sum_{k=1}^{K} (f_{k} - \tilde{f}_{k})^{2}}{\frac{1}{K} \sum_{k=1}^{K} (f_{k})^{2}}$

Model architecture for Transformer Encoder

DeepFreq¹: Problem Formulation

The problem formulation is the same as above, but for the sake of completeness, I give it below in their terminology

Signal Model: Multisinusoidal signal representation

$$S(t) = \sum_{j=1}^m a_j e^{i2\pi f_j t},$$

where $a_j \in \mathbb{C}$ represents amplitude and phase, $f_j \in [0, 1]$ denotes unknown frequencies, and t is time.

Measurement Model: Observations are given by

$$y_k = S(k) + z_k, \quad 1 \le k \le N,$$

where z_k represents additive noise. The goal is to estimate f_1, \ldots, f_m from noisy samples y_k .

¹Izacard, Gautier, S. Mohan, and C. Fernandez-Granda. "Data-driven estimation of sinusoid frequencies." NeurIPS (2019).

Methodology

Frequency Representation: The neural network is trained to approximate a ground-truth frequency representation

$$FR(u) = \sum_{j=1}^m K(u-f_j),$$

where K is a narrow Gaussian kernel centered at each frequency f_j .

- Counting Module: A convolutional neural network counts the frequency components by analyzing local maxima in the learned frequency representation.
- Objective: Minimize the loss function

$$Loss = \|DeepFreq(y) - FR(u)\|_2^2$$
,

where FR(u) is the true frequency representation and DeepFreq(y) is the network's output.

Experimental Setup and Results

Chamfer Distance: To evaluate performance, the Chamfer distance d(f, f̂) is calculated between true frequencies f = (f₁,..., f_m) and estimates f̂ = (f̂₁,..., f̂_{m̂}),

$$d(f, \hat{f}) = \sum_{f_i \in f} \min_{\hat{f}_j \in \hat{f}} |f_i - \hat{f}_j| + \sum_{\hat{f}_i \in \hat{f}} \min_{f_i \in f} |\hat{f}_j - f_i|.$$

Comparison: DeepFreq performs similarly to the hybrid bidirectional LSTM-CNN model. The Transformer-encoder model performs better than both in high-resolution cases

Results

Figure 2: NMSE Vs Resolution for different SNR values

Performance for different SNRs

Figure 3: NMSE for resolution of 1/150

Application: Finite Rate of Innovation

Signal Model: The FRI signal is represented by a periodic stream of Dirac pulses:

$$x(t) = \sum_{k=0}^{K-1} a_k \delta(t-t_k),$$

where a_k are the amplitudes and t_k the locations of the Dirac pulses.

Acquisition Model: The continuous signal is sampled with kernel \u03c6(t):

$$y[n] = \langle x(t), \phi(t/T - n) \rangle = \sum_{k=0}^{K-1} a_k \phi\left(\frac{t_k}{T} - n\right).$$

Conversion to Sum of Exponential

Let,

$$s[m] = \sum_{n=0}^{N-1} c_{m,n} y[n]$$

Exponential Reproducing Kernel and Frequency Separation:

$$\sum_{n \in \mathbb{Z}} c_{m,n} \varphi(t-n) = \exp(j\omega_m t) \quad \text{where} \quad \omega_m = \omega_0 + m\lambda$$

Then we can write in terms of the Sum of Exponentials:

$$s[m] = \sum_{k=0}^{K-1} b_k(\mu_k)^n$$

Perfect Prediction in Noise-Free Case: For any s[m], there exists a set of coefficients {c_k}^K_{k=1} such that s[m] = ∑^K_{k=1} c_ks(m − k).

Learning-Based FRI Reconstruction¹

- FRIED-Net: Encoder-decoder model for FRI reconstruction, useful when kernel φ(t) is unknown. Consists of:
 - Encoder: Estimates Dirac locations directly from noisy samples.
 - Decoder: Resynthesizes samples y[n] based on estimated parameters:

$$y[n] = \sum_{k=0}^{K-1} a_k \phi\left(\frac{t_k}{T} - n\right).$$

¹Leung, Vincent CH, et al. "Learning-based reconstruction of FRI signals." IEEE TSP (2023).

Method and Dataset

- We use M = 21, N M = 39
- ► We use the analytical formula given above for s[m] to compute the future noiseless N – M samples which are then used for training the model
- All samples are scaled down using the maximum value of the analytical samples achieving better training convergence

Results

Figure 4: NMSE for resolution of 1/50

References I

- [1] Jay Alammar. The Illustrated Transformer. Accessed: 2024-11-19. 2018. URL: https: //jalammar.github.io/illustrated-transformer/.
- [2] Sampath Kumar Dondapati, Omkar Nitsure, and Satish Mulleti. "Super-Resolution via Learned Predictor". In: arXiv preprint arXiv:2409.13326 (2024).
- [3] Gautier Izacard, Sreyas Mohan, and Carlos Fernandez-Granda.
 "Data-driven estimation of sinusoid frequencies". In: Advances in Neural Information Processing Systems 32 (2019).
- [4] Vincent CH Leung et al. "Learning-based reconstruction of FRI signals". In: IEEE Transactions on Signal Processing (2023).
- [5] A. Paulraj, R. Roy, and T. Kailath. "A subspace rotation approach to signal parameter estimation". In: *Proc. IEEE* 74.7 (1986), pp. 1044–1046. ISSN: 0018-9219. DOI: 10.1109/PROC.1986.13583.

References II

- [6] R. O. Schmidt. "Multiple emitter location and signal parameter estimation". In: *IEEE Trans. Antennas and Propag.* 34.3 (Mar. 1986), pp. 276–280. ISSN: 0018-926X. DOI: 10.1109/TAP.1986.1143830.
- [7] A Vaswani. "Attention is all you need". In: Advances in Neural Information Processing Systems (2017).

Questions/Suggestions

Thank you!

Transformer Encoder¹: Detailed Breakdown

- Feedforward is an MLP layer (The middle layer has 1024 Neurons)
- We have used a learnable matrix as the positional encoding
- Add & Norm is the standard residual connection followed by Layer Normalization
- Multi-Head Attention: It has multiple attention heads (we used 8)

¹Vaswani, A. "Attention is all you need." Advances in Neural Information Processing Systems (2017).

How does the Self-Attention¹ Work?

Figure 5: qkv computations

Figure 6: self-attention formula

¹Jay Alammar. The Illustrated Transformer. 2018. URL: https://jalammar.github.io/illustrated-transformer/.

- W^Q, W^k, and W^v are learnable projection matrices
- Dot product between Q and K measures how relevant different K are for the Q
- Scaling of \(\sqrt{d_k}\) is used to prevent SoftMax values from saturating
- SoftMax gives the probability distribution and the corresponding V are added in that proportion