
High Resolution Spectral Estimation
Bachelor Thesis Project

Omkar Nitsure
Guide: Prof. Satish Mulleti

Electrical Engineering, IIT Bombay

Nov 25, 2024
Github Link: https://github.com/omkar-nitsure/Data-driven-HRSE/tree/main

https://github.com/omkar-nitsure/Data-driven-HRSE/tree/main


Introduction

▶ Frequency estimation from samples corrupted by noise is a
fundamental challenge & has many applications

▶ Particularly useful in tests used for medical diagnosis like
Sonography, Optical Coherence Tomography

▶ Compute Direction-of-Arrival (DoA), analyze radar data
▶ Ability to resolve is limited by noise level and number of

measurements (resolution limit decreases with higher SNR and
more measurements)

▶ Methods that require fewer samples are highly desirable as
acquiring samples is expensive (sometimes inconvenient)



Problem Statement
▶ Given: Set of samples of a signal acquired through a series of

sensors (radar)
▶ Solve: Spectral composition of the signal
▶ Assumption: Spectrum non-zero only for 2 frequencies
▶ Smallest resolution achieved: 1

6
th of the limit for fourier

methods
▶ Approach: We use a predictor to predict N −M future

samples given M samples and then use ESPRIT to resolve the
frequencies using combined N samples

C
Learnable Predictor
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Figure 1: Block diagram of our approach



Signal Formulae

x(n) =
L∑

l=1

ale
j2πfln + w(n), n = 1, . . . ,N

here, L = 2, a1 = a2 = 1,w(n) ∼ Normal(0, σ2)

SNR = 10 log10(
|x(n)|22
Nσ2 )



Theoretical limit for Fourier-based Techniques

High resolution refers to precision beyond that achievable with the
periodogram or Fourier-based methods. This limit is as follows:-
▶ N : Number of samples available through sensors
▶ Assuming, the signal consists of 2 frequencies f1 and f2, they

can be successfully resolved using fourier-based/periodogram
methods if the separation follows:

|f1 − f2| ≥
1
N



ESPRIT & MUSIC

▶ ESPRIT1 & MUSIC2 offer greater robustness and finer
resolution than periodogram methods

▶ Techniques like PSnet3 learn the pseudo-spectrum and perform
frequency estimation through peak identification

▶ Key Insight: estimating frequencies from a pseudo-spectrum is
more effective than training a network to estimate frequencies
directly

1R. Roy and T. Kailath, "ESPRIT–Estimation of Signal Parameters via
Rotational Invariance Techniques," ICASSP, 1989.

2R. O. Schmidt, "Multiple Emitter Location and Signal Parameter
Estimation," IEEE Transactions on Antennas and Propagation, 1986.

3Izacard, Gautier, B. Bernstein, and C. Fernandez-Granda. "A
learning-based framework for line-spectra super-resolution.", ICASSP 2019.



Experiment Setup

▶ We start with M = 50 samples (model input)
▶ Use machine learning models to predict N −M = 100 future

samples (model output)
▶ Concatenate the above 2 to get N = 150 samples
▶ Use frequency estimation algorithms (ESPRIT) to find

frequencies given 150 samples

Purpose
▶ Due to limited budget of 50 samples we are otherwise

restricted to a resolution of 1
50 using ESPRIT

▶ If the model accuracy is high, we can reduce the resolution
limit to 1

150



Dataset Generation

Considerations
▶ We want the model to generalize well to a range of frequency

separations
▶ We want the model to perform well even for low SNRs
▶ We don’t want the model to overfit the training data

Solutions
▶ Make sure that the dataset has reasonable proportions of

different resolutions
▶ Train different models for different SNR ranges
▶ Generate a large enough dataset with sufficient randomness in

different signal parameters



Frequency Selection
We select frequencies from 6 sets to ensure enough diversity.
Here ∆f = 1

N ,
▶ Set 1: 20000 examples such that

f1 ∼ Uniform(0, 0.5 −∆f ), f2 = f1 + 0.5∆f

▶ Set 2: 20000 examples such that
f1 ∼ Uniform(0, 0.5 −∆f ), f2 = f1 +∆f + ϵ
ϵ ∼ Uniform(−(f1 +∆f ), 0.5 − f1 −∆f )

▶ Set 3: 5625 examples where f1 and f2 are selected from a grid
in the range [0, 0.5]. Grid separation is ∆f

▶ Set 4: 20000 examples such that
f1 ∼ Uniform(0, 0.5 −∆f ), f2 = f1 + k∆f

k ∈
[
⌈(− f1

∆f
)⌉, · · · , ⌊0.5−f1

∆f
⌋
]

▶ Set 5: 20000 examples such that, f1, f2 ∼ Uniform(0, 0.5−∆f )

▶ Set 6: 20000 examples such that, f1 ∼ Normal(0.25, 0.25),
f2 ∼ Uniform(0, 0.5 −∆f )



Model Details

We used 2 model architectures,
▶ hybrid bidirectional LSTM-CNN
▶ Transformer-Encoder - 0.46 million learnable parameters

Loss function and Evaluation metric

Loss (L):
I∑

i=1

∥xm,i − Gθ(xa,i )∥2
2

Metric: NMSE =
1
K

∑K
k=1(fk − f̃k)

2

1
K

∑K
k=1(fk)

2



Model architecture for Transformer Encoder

N = 50 true measurements

MLP (Projection Layer), LeakyReLU

Batch Normalization

Positional Encoding + Batch Normalization

Transformer Encoder(2 layers)

Batch Normalization

MLP (Expand Layer), LeakyReLU

Batch Normalization

Dense, linear

M = 100 predicted measurements



DeepFreq1: Problem Formulation

The problem formulation is the same as above, but for the sake of
completeness, I give it below in their terminology
▶ Signal Model: Multisinusoidal signal representation

S(t) =
m∑
j=1

aje
i2πfj t ,

where aj ∈ C represents amplitude and phase, fj ∈ [0, 1]
denotes unknown frequencies, and t is time.

▶ Measurement Model: Observations are given by

yk = S(k) + zk , 1 ≤ k ≤ N,

where zk represents additive noise. The goal is to estimate
f1, . . . , fm from noisy samples yk .

1Izacard, Gautier, S. Mohan, and C. Fernandez-Granda. "Data-driven
estimation of sinusoid frequencies." NeurIPS (2019).



Methodology
▶ Frequency Representation: The neural network is trained to

approximate a ground-truth frequency representation

FR(u) =
m∑
j=1

K (u − fj),

where K is a narrow Gaussian kernel centered at each
frequency fj .

▶ Counting Module: A convolutional neural network counts
the frequency components by analyzing local maxima in the
learned frequency representation.

▶ Objective: Minimize the loss function

Loss = ∥DeepFreq(y)− FR(u)∥2
2 ,

where FR(u) is the true frequency representation and
DeepFreq(y) is the network’s output.



Experimental Setup and Results

▶ Chamfer Distance: To evaluate performance, the Chamfer
distance d(f , f̂ ) is calculated between true frequencies
f = (f1, . . . , fm) and estimates f̂ = (f̂1, . . . , f̂m̂),

d(f , f̂ ) =
∑
fi∈f

min
f̂j∈f̂

|fi − f̂j |+
∑
f̂j∈f̂

min
fi∈f

|f̂j − fi |.

▶ Comparison: DeepFreq performs similarly to the hybrid
bidirectional LSTM-CNN model. The Transformer-encoder
model performs better than both in high-resolution cases



Results
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Figure 2: NMSE Vs Resolution for different SNR values



Performance for different SNRs
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Figure 3: NMSE for resolution of 1/150



Application: Finite Rate of Innovation

▶ Signal Model: The FRI signal is represented by a periodic
stream of Dirac pulses:

x(t) =
K−1∑
k=0

akδ(t − tk),

where ak are the amplitudes and tk the locations of the Dirac
pulses.

▶ Acquisition Model: The continuous signal is sampled with
kernel ϕ(t):

y [n] = ⟨x(t), ϕ(t/T − n)⟩ =
K−1∑
k=0

akϕ
( tk
T

− n
)
.



Conversion to Sum of Exponential

▶ Let,

s[m] =
N−1∑
n=0

cm,ny [n]

▶ Exponential Reproducing Kernel and Frequency Separation:∑
n∈Z

cm,nφ(t − n) = exp(jωmt) where ωm = ω0 +mλ

▶ Then we can write in terms of the Sum of Exponentials:

s[m] =
K−1∑
k=0

bk(µk)
m

▶ Perfect Prediction in Noise-Free Case: For any s[m], there
exists a set of coefficients {ck}Kk=1 such that
s[m] =

∑K
k=1 cks(m − k).



Learning-Based FRI Reconstruction1

▶ FRIED-Net: Encoder-decoder model for FRI reconstruction,
useful when kernel ϕ(t) is unknown. Consists of:
▶ Encoder: Estimates Dirac locations directly from noisy

samples.
▶ Decoder: Resynthesizes samples y [n] based on estimated

parameters:

y [n] =
K−1∑
k=0

akϕ
( tk
T

− n
)
.

1Leung, Vincent CH, et al. "Learning-based reconstruction of FRI signals."
IEEE TSP (2023).



Method and Dataset

▶ We use M = 21,N −M = 39
▶ We use the analytical formula given above for s[m] to compute

the future noiseless N −M samples which are then used for
training the model

▶ All samples are scaled down using the maximum value of the
analytical samples achieving better training convergence



Results
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Questions/Suggestions

Thank you!



Transformer Encoder1: Detailed Breakdown

▶ Feedforward is an MLP layer (The middle
layer has 1024 Neurons)

▶ We have used a learnable matrix as the
positional encoding

▶ Add & Norm is the standard residual
connection followed by Layer
Normalization

▶ Multi-Head Attention: It has multiple
attention heads (we used 8)

1Vaswani, A. "Attention is all you need." Advances in Neural Information
Processing Systems (2017).



How does the Self-Attention1 Work?

Figure 5: qkv computations

Figure 6: self-attention formula

▶ WQ , W k , and W v are
learnable projection matrices

▶ Dot product between Q and
K measures how relevant
different K are for the Q

▶ Scaling of
√
dk is used to

prevent SoftMax values from
saturating

▶ SoftMax gives the
probability distribution and
the corresponding V are
added in that proportion

1Jay Alammar. The Illustrated Transformer. 2018. URL:
https://jalammar.github.io/illustrated-transformer/.
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