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Abstract—Frequency estimation from measurements cor-
rupted by noise is a fundamental challenge across numerous
engineering and scientific fields. Among the pivotal factors
shaping the resolution capacity of any frequency estimation
technique are noise levels and measurement count. Often con-
strained by practical limitations, the number of measurements
tends to be limited. This work introduces a learning-driven
approach focused on predicting forthcoming measurements
based on available samples. Subsequently, we demonstrate
that we can attain high-resolution frequency estimates by
combining provided and predicted measurements. In particu-
lar, our findings indicate that using just one-third of the total
measurements, the method achieves a performance akin to
that obtained with the complete set. Unlike existing learning-
based frequency estimators, our approach’s output retains
full interpretability. This work holds promise for developing
energy-efficient systems with reduced sampling requirements,
which will benefit various applications.

Index Terms—high-resolution spectral estimation, learnable
predictor, Transformer, LSTM, CNN.

I. INTRODUCTION

The task of frequency estimation is to determine a set
of L frequencies from a set of M measurements. This is a
common problem in various applications, such as direction-
of-arrival estimation, Doppler estimation in radar and sonar,
ultrasound imaging, optical coherence tomography, and
nuclear magnetic spectroscopy. In most applications, the
frequency resolution of algorithms is a crucial factor and
generally increases with the number of measurements in the
presence of noise. However, the number of measurements
is often limited due to cost and power consumption. Hence,
algorithms capable of achieving high resolution with fewer
measurements are desirable.

Theoretically, 2L samples are sufficient and necessary
to determine L frequencies uniquely in the absence of
noise. In practice, Prony’s algorithm can operate with such
limited samples [1]. Though the algorithm has infinite
resolution in the absence of noise, it is highly unstable
at the slightest noise level. Denoising algorithms could be
applied to improve the noise robustness at the expense of
high computations [2], [3].

The investigation centered on high-resolution spectral
estimation (HRSE) has led to the exploration of multiple
noise-resistant techniques (detailed in Chapter 4 of [4]).
High resolution in this context denotes algorithmic pre-
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cision that surpasses that of the periodogram or Fourier
transform-based approach, characterized by 1/M. Among
these techniques is the multiple signal classification method
(MUSIC) [5]-[7], the estimation of signal parameters using
the rotational invariance technique (ESPRIT) [8], and the
use of the matrix pencil method [9]. These techniques
exhibit superior robustness and enhanced resolution ca-
pabilities compared to periodogram and annihilating filter
methods. In [7], a precise mathematical expression is
derived for frequency estimation, highlighting the inverse
relationship between error and minimum frequency sepa-
ration under medium to high signal-to-noise ratios (SNRs)
as M tends to infinity. High resolution might necessitate
a sufficiently large value of M in scenarios with non-
asymptotic conditions and low SNR.

The majority of the aforementioned HRSE techniques
are built upon uniform consecutive samples of sinusoidal
signals. Multiple strategies have emerged for estimating
frequencies from irregular samples [10]-[14]. In particular,
[12]-[14] introduces an approach centered on minimization
of atomic norms, which extends the concept of a norm
¢ for the estimation of sparse vectors [15], [16]. Instead
of using all M consecutive samples of the signal, the
atomic norm-based method estimates frequencies with high
probability from O(L, log L, log M) random measurements
from available M measurements, provided that no two
frequencies are closer than 4/M [12], [13]. Though the
theoretical resolution ability of the method is four times
lower than the periodogram, in practice, the algorithm is
shown to resolve frequencies separated by 1/M. However,
these techniques have high computational complexity due
to reliance on semidefinite programming.

A potential reduction in computational burden is attain-
able through data-driven methodologies. For instance, [17]
introduced PSnet, a deep-learning-based scheme for fre-
quency estimation. Analogous to the principles behind peri-
odogram and root-MUSIC [7], the authors suggest an initial
step of learning a pseudo-spectrum from samples, followed
by frequency estimation via spectrum peak identification.
Empirical observations reveal the superiority of PSnet over
MUSIC and periodogram when the minimum frequency
separation equals 1/M. The important insight is that esti-
mating frequencies from a learned frequency representation
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(e.g., pseudo-spectrum) is more advantageous than training
a deep network to directly learn frequencies from the sam-
ples, as attempted in [18]. An enhanced version of PSnet is
proposed in [19], introducing architectural improvements
in the network and incorporating a learned estimator for
the frequency count L. These techniques employ triangular
and Gaussian kernels to construct pseudo-spectra, although
the optimal kernel selection remains an open question.
Furthermore, the impact of pseudo-spectrum discretization
on learning was not addressed. Diverse adaptations and
extensions of these approaches are presented in [20]-[27].
In all these approaches, the choice of pseudo-spectrum or
spectral representation, which is learned by the network, is
contentious both in terms of its choice during training and
its interpretability.

Several alternative learning strategies assume a grid-
based arrangement of frequencies and employ multilabel
classification to tackle the issue [28]. This ‘“on-grid”
presumption, however, imposes limitations on resolution
capabilities. In a different direction, a subset of methods
learns denoising techniques before applying conventional
frequency estimation methods [29], [30]. These approaches
necessitate broad training across various noise levels [29]
or demand an extensive set of training samples [30]. In
a nutshell, a non-learning-based approach requires many
samples to reach a desired resolution in the presence
of noise. However, the learning-based methods are data-
hungry and non-interpretable, and the resolution is still not
below the periodogram limit.

In this paper, we adopt a novel data-driven approach for
frequency estimation from noisy measurements to achieve
high resolution while maintaining interpretability. For a
fixed resolution, the estimation error of any frequency
estimation algorithm decreases with a higher signal-to-
noise ratio (SNR) and/or an increased number of samples.
Denoising can mitigate noise effects, although it possesses
inherent limitations [2], [30]. Consequently, our focus
shifts towards enhancing the number of samples, aiming to
boost accuracy. Our proposed solution entails a learning-
based predictor that augments the number of samples by
extrapolating from a small set of noisy samples. Specifi-
cally, we predict N — M samples from M measurements,
where N > M. By leveraging the provided M samples
alongside the predicted ones, we approach the accuracy
achievable with N samples. We propose two architectures
for the learnable predictor. The first is a hybrid LSTM-CNN
model, whereas the second is realized by an Encoder-only
Transformer [31]. Unlike methods such as [17], [19]-[25],
our approach does not require the selection or design of
pseudo-spectra which may not have an interpretation in
terms of conventional Fourier spectra. Through simulations,
we show that by using M noisy measurements, we achieve
a higher resolution and lower errors for different SNRs than

the HRSE approach and the method in [19], especially with
the TF-based predictor.

The structure of the paper unfolds as follows: Section 2
defines the signal model and outlines the problem formula-
tion. In Section 3, we delve into the details of the proposed
predictor. Section 4 covers network design and simulation
results, followed by conclusions.

II. PROBLEM FORMULATION

Consider N uniform samples of a linear combination of
complex exponentials given as

L
z(n) = Zae exp(j2rfen) +w(n), n=1,---
=1

_N.

&)

Here, the coefficients ay € R represent amplitudes, and
fe € (0,0.5] represent normalized frequencies. The term
w(n) is additive noise, which is a zero-mean Gaussian
random variable with variance o2, with the samples being
independent and identically distributed. The objective is to
estimate the frequencies { fg}eL:1 from the measurements.

Estimation accuracy relies on the following 2factors: the
SNR, measured in decibels as 10log; (le\(fz)le s
of measurements )M, and resolution Ay, representing the
smallest distance between any two frequencies in z(n).
Keeping SNR and resolution constant means that higher
accuracy requires a larger number of measurements. On
the other hand, for an acceptable estimation accuracy and
a given SNR, the achievable resolution is around 1/N for
HRSE methods if all the N measurements are used. When
it is expensive to gather a large number of measurements
and a subset of the measurements {z(n)} , are available,
where M < N, the resolution decreases to 1/M.

The question is whether a resolution of 1/N lower is
achievable from M measurements. We show that this is
possible by using a learning-based approach for frequency
estimation, which will be discussed in the following sec-
tions.

number

III. LEARNABLE PREDICTOR

Utilizing HRSE and non-learnable techniques to estimate
frequencies from the complete set of N measurements
might yield favorable accuracy and resolution. Nonetheless,
this may not hold true in cases where only M (consec-
utive) samples are accessible. We introduce a two-step
strategy to achieve resolution closer to 1/N using the
available M measurements. In the first stage, we predict
clean samples {(n)}2_,,. | based on the provided noisy
measurements {x(n)}*.,. The predicted samples are rep-
resented as {Z(n)})_,,, . Subsequently, we concatenate
these estimated samples with the existing ones and employ
HRSE methods to estimate the frequencies.
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Learnable Predictor| -

xaT . X . @—{ HRSE —
(7]

Fig. 1. Schematic of the proposed frequency estimation method: The
predictor estimates the future samples from the given samples and then
concatenates with the true samples by using concatenation operation C.
Then HRSE methods are used to estimate frequencies from the samples.

Estimated
frequencies

In the initial phase, when noise is absent, it is possible to
achieve perfect prediction for z(n) [32]. Specifically, in the
absence of noise, for any x(n) as in (1), there exists a set of

chxn k),n=

K+1,--- N, where K > L. In the presence of noise,
{er}E_, are estimated using least-squares, aiming to m1r21—
imize the error ZS:LH ‘x(n) - Zle ek, x(n — k)’
However, this predictive approach remains susceptible to
errors in low SNR and situations with lower resolution.
Furthermore, the coefficients have to be recalculated for
different signals.

To construct a robust predictor applicable to a class
of signals, we train deep learning models to estimate
{z(n)}N_,,., based on the available samples. To elab-
orate, consider the vectors x, € R™ and x,, € RN-M,
representing the available first M/ measurements and the
last N — M samples, respectively. To be precise, let {x;}_,
represent a collection of noisy samples following the form
in (1), where frequencies and amplitudes vary among
examples. By splitting the measurements of these examples
into the initial M measurements and the remaining set, we
obtain the vectors {x,;}/_; and {x,,:}!_,. The network
parameters @ are optimized to minimize the cost function

I
5 i — G
=1

During inference, for any set of M noisy samples X,,
the future samples are predicted as x,, = Gg(X,). Then
a HRSE method is applied on the concatenated vector
[xI' xT]T for frequency estimation. The overall system is

shown in Fig. 1.

coefficients {cy }%_; such that z(n

(xa,0) 13 @

IV. EXPERIMENTAL DESIGN AND SIMULATION
RESULTS

In this section, we first discuss network design and data
generation. Then, we compare the proposed approach with
the existing methods.

A. Network Architecture

1) Hybrid LSTM-CNN model: The CNN-based architec-
ture of the learnable predictor combines convolutional and
recurrent neural network as shown in Fig. 2. We employ

dropout to avoid overfitting and batch-normalization is used
for stable convergence.

X, (50 noisy samples)
|
{Conv layer (3X) (Filters=64, Kemels=5,7,9)1
¥
[Bidirectional LSTM layer (units=64)]
¥
[ Linear projection 1

¥
Xm (100 clean predicted samples)

Fig. 2. Hybrid LSTM-CNN model’s architecture.

2) Transformer-Encoder-based model: The model ar-
chitecture is shown in Fig. 3; here, we employ batch-
normalization in intermediate steps to improve con-
vergence. Additionally, learnable positional encoding is
adapted before feeding the input to the transformer block.

X, (50 noisy samples)

|

{ Projection head }

pos encoding —>@

Transformer Encoder}
v

[Linear expansion and down—projection}

¥

Xm (100 clean predicted samples)

Fig. 3. Transformer model’s architecture.

B. Training Data Generation

Since the task is to improve the resolution from 1/M
to 1/N, we considered only two frequencies (L = 2) with
equal amplitudes during training and testing. Further, to
have a resolution of at least Ay = 1/N and potentially
improve on smaller resolutions, the samples were generated
such that they had some examples with resolutions smaller
than 1/N. We generated the following six data sets to
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provide a sufficient mix of frequencies for the model to
generalize well.

o Set-1: 20000 examples were generated with minimum
resolution. For each example, f; was chosen uni-
formly at random from the interval [0, 0.5—A]. Then
the second frequency was set as fo = fi + 0.5Af.

o Set-2: In this set, 20000 examples were generated with
a resolution greater than Ay. For each example, f;
was chosen randomly as in the previous set. Then, we
selected f> = f1+Af+e where € was generated from
a uniform distribution [—(f1 +Ay), (0.5 — f1 — Ay)].
The distribution of € ensures that |fa — fi| > Ajy.

o Set-3: This set consists of 5625 examples where both
frequencies were randomly generated from a two-
dimensional grid with a grid size Ay. Since the
frequencies had to be limited to the range [0, 0.5], for
each frequency, the grid points were given by the set
{kAy }25:1

e Set-4: In this set, f; was chosen as in Set-1 or
Set-2, and then, we set the second frequency as
fo = fi + kAy where k was chosen randomly from

T 4T, 1958 )] A total of
20000 examples were generated in this set.

o Set-5: This set consists of 20000 examples in which
both f; and f; were chosen uniformly at random from
the interval [0, 0.5]

e Set-6: In this set, f; was chosen from a Gaussian
distribution with a mean and standard deviation of
0.25 and restricted to the range [0, 0.5]. f2 was chosen
uniformly at random from the interval [0, 0.5]. A total
of 20000 examples were generated in this set.

the integer set

Set 3 and 4 were generated to help the network to
separate frequencies separated by integer multiples of Ay,
which is the key in the resolution analysis. The above six
sets have 105625 possible pairs of frequencies (f1, f2).
The samples were generated for each pair of frequencies
following (1) with a; = as = 1 and for NV = 150. Each of
these 105625 signal samples was corrupted with noise for a
given SNR. Specifically, three independent noise instances
for each example were realized, resulting in a total of
316875 examples. We also trained different networks for
each SNR.

By keeping M = 50 (note that N = 150 in our setup),
the network was trained for 50 epochs with a batch size
of 128 in the CNN-based model and 2048 in the TF-based
model. The training loss was minimized using the Adam
optimizer with a learning rate of 0.001. A performance
comparison of the proposed algorithm through simulations
will be discussed next.

C. Simulation Results

In this section, we compared the following methods for
frequency estimation by setting N = 150 and M = 50.

-o-50T o= 50T

~o-150T

A~ Deep Freq model
=&~ CNN-50T+100P
~e~ TF-50T+100P

=-150T
10 -4~ Deep Freq model °
=&~ CNN-50T+100P
~e=TF-50T+100P

NMSE in dB
NMSE in dB

=70
0 0 D 0
A 2

-80
N 0 0 0 M 0
S RS 2 X

RESOLUTION RESOLUTION

(a) SNR = 5dB (b) SNR=15 dB

0 ~o-50T =A=Deep Freq model =@=TF-50T+100P
=~ 150T ~@~CNN-50T+100P

»
S

NMSE in dB
5
}»

|

3
8

SNRin dB

© Ap =1/150

Fig. 4. A comparison of various methods for different resolutions at
5dB and 15dB SNR where L = 2: The proposed approach, labeled as
TF-50T+100P, has 50 dB lower error than 50T for frequency separation
equal to the resolution limit Ay = 1/150.

e 50T: Used M = 50 noisy samples with ESPRIT [8].

e 150T: Used N = 150 noisy samples with ESPRIT [8].

e CNN-50T+100P: Used 50 true noisy (7) with 100
predicted (P) samples with ESPRIT. The predictor is
realized by CNN.

o TF-50T+100P: Same as the previous approach, but
the prediction is via the TF.

o Deep-Freq model [19]. The model is trained using the
proposed dataset

For an objective comparison, we used normalized mean-
squared error (NMSE), which was computed as

50 (k= fi)?
%Zf:ﬂfky

where fj, is an estimate of the frequency fj.

In the following simulation, we examine the model
performance under varying resolution conditions for SNRs
5 dB and 15 dB. For each SNR and a given resolution,
200 test examples are generated. For each example, first,
f1 is randomly selected and then we set fo = f1 + A,
where A represents the desired resolution. With a limited
sample size of M = 50, the Fourier-based periodogram
method achieved a resolution threshold of 1/50 = 0.02 Hz,
whereas the full N-sample scenario yielded a resolution of
Ay =1/N =0.0067 Hz.

In Figs. 4(a) and (b), MSEs for various resolutions are
shown for SNRs 5 dB and 15 dB, respectively. Starting
from 50 samples, the learning-based approaches were able

NMSE = , (3)
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TABLE I
PERFORMANCE COMPARISON OF HRSE AND PROPOSED TF-BASED METHOD FOR 15dB SNR
Method Size Resolution (NMSE in dB) Relative time overhead
0.5/150 | 1/150 | 2/150 | 3/150

ESPRIT (50T) - 0.14 -5.63 | -41.39 | -51.59 0.1X

ESPRIT (150T) - -52 -65.33 | -71.42 | -73.21 1X
TF dim=64, FF dim=256, N=2 | 160k -56.2 -61.9 | -65.83 | -68.46 1.026X
TF dim=64, FF dim=256, N=1 | 110k | -50.26 | -53.74 | -55.98 -56 1.015X
TF dim=64, FF dim=128, N=2 | 110k | -52.26 -499 | -57.84 | -584 1.023X
TF dim=64, FF dim=512, N=2 | 259k | -54.21 | -60.31 | -62.1 | -65.54 1.032X
TF dim=64, FF dim=1024, N=2 | 457k | -54.26 | -59.34 | -61.91 | -64.2 1.042X
TF dim=32, FF dim=128, N=2 46k -50 -46.23 | -44.32 | -50.95 1.015X

to have better resolution than 507. Among the learnable
methods, TF-50T+100P was able to achieve the same
(super)resolution ability as that of /50T. Interestingly, at
SNR 5 dB, the CNN-50T+100P and DeepFreq have lower
errors compared to /50T and TF-50T+100P for resolutions
below A f = 1/150. But for higher resolutions, the NMSEs
for these methods are not decreasing as rapidly as TF-
50T+100P and 150T. Additionally, the CNN-LSTM model
matches the performance of DeepFreq, indicating that these
model architectures are inherently incapable of attaining
super-resolution accuracy.

Next, we compared the methods for different SNRs
while keeping the resolution as Ay = 1/150, and the
NMSE:s are depicted in Figs. 4(c). For each SNR, 1000 test
samples were used where the frequencies f; were picked
randomly, and then we set f = f; + Af.As expected, 50T
results in the highest error, while /50T has approximately
50 dB less error at the cost of three times the number
of measurements. In comparison, learning-based methods
have significantly lower error than 50T while using the
same number of measurements. Specifically, 15 — 35 dB
lower for CNN-50T+100P and DeepFreq, and 45 — 50 dB
for TF-50T+100P.

D. Analysis

1) Computational Cost: We also evaluated the compu-
tational cost of our approach in comparison to traditional
methods as shown in Table I. While our model incurs a
2.6% overhead with the same number of samples, this
increased cost is compensated by a 66% reduction in
sampling requirements. It is evident that the computational
cost of traditional HRSE methods is the main source of
latency and our proposed learning-based methods introduce
negligible overhead. Overall, the proposed learning-based
methods, especially the TF-50T+100P model, achieves

super-resolution with significantly fewer measurements,
even across various signal-to-noise ratios (SNRs).

2) Performance dependence on Model Scale: We now
present a comprehensive evaluation of the Transformer-
based model and the key design choices for accurate
and efficient prediction of future samples. The experiment
results for 15 dB SNR are reported in Table I, where TF
dim is the transformer model (hidden) dimension, FF dim
is the feedforward layer dimension, and N is the number of
transformer layers, while the important insights are valid
for other SNRs too. We observe that the feature dimension
in the Transformer Encoder is the most important factor
affecting prediction error, especially at higher resolutions.
Additionally, for a fixed value of the feature dimension,
the prediction error varies significantly with the ratio of the
dimension of the intermediate linear layer in the MLP to the
feature dimension. The best performance is achieved for the
ratio of 4, and it degrades on both sides of this value. This
is particularly important as this dimension determines the
number of parameters in the MLP layer, which constitute
the major part of the overall model size. We also note that
there is substantial performance degradation for shallower
models, suggesting that the depth of the Transformer En-
coder is essential to generate high-quality representations,
which can then be leveraged by the linear head to perform
accurate predictions. These insights allow us to achieve
super-resolution accuracy with small model sizes.

V. CONCLUSIONS

In this study, we present a novel learning-best approach
for accomplishing super-resolution frequency estimation.
Our approach involves training a model to predict future
samples in a sum of complex exponentials using a limited
sample set. By subsequently incorporating both the avail-
able and predicted samples, we successfully demonstrate
the attainment of high-resolution estimation. This algorithm
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proves valuable in scenarios where measurements come
at a premium. Our ongoing efforts are directed towards
expanding the method to predict samples from non-uniform
datasets.
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