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Abstract—Frequency estimation from measurements cor-
rupted by noise is a fundamental challenge across numerous
engineering and scientific fields. Among the pivotal factors
shaping the resolution capacity of any frequency estimation
technique are noise levels and measurement count. Often con-
strained by practical limitations, the number of measurements
tends to be limited. This work introduces a learning-driven
approach focused on predicting forthcoming measurements
based on available samples. Subsequently, we demonstrate
that we can attain high-resolution frequency estimates by
combining provided and predicted measurements. In particu-
lar, our findings indicate that using just one-third of the total
measurements, the method achieves a performance akin to
that obtained with the complete set. Unlike existing learning-
based frequency estimators, our approach’s output retains
full interpretability. This work holds promise for developing
energy-efficient systems with reduced sampling requirements,
which will benefit various applications.

Index Terms—high-resolution spectral estimation, learnable
predictor, Transformer, LSTM, CNN.

I. INTRODUCTION

The task of frequency estimation is to determine a set

of L frequencies from a set of M measurements. This is a

common problem in various applications, such as direction-

of-arrival estimation, Doppler estimation in radar and sonar,

ultrasound imaging, optical coherence tomography, and

nuclear magnetic spectroscopy. In most applications, the

frequency resolution of algorithms is a crucial factor and

generally increases with the number of measurements in the

presence of noise. However, the number of measurements

is often limited due to cost and power consumption. Hence,

algorithms capable of achieving high resolution with fewer

measurements are desirable.

Theoretically, 2L samples are sufficient and necessary

to determine L frequencies uniquely in the absence of

noise. In practice, Prony’s algorithm can operate with such

limited samples [1]. Though the algorithm has infinite

resolution in the absence of noise, it is highly unstable

at the slightest noise level. Denoising algorithms could be

applied to improve the noise robustness at the expense of

high computations [2], [3].

The investigation centered on high-resolution spectral

estimation (HRSE) has led to the exploration of multiple

noise-resistant techniques (detailed in Chapter 4 of [4]).

High resolution in this context denotes algorithmic pre-

cision that surpasses that of the periodogram or Fourier

transform-based approach, characterized by 1/M . Among

these techniques is the multiple signal classification method

(MUSIC) [5]–[7], the estimation of signal parameters using

the rotational invariance technique (ESPRIT) [8], and the

use of the matrix pencil method [9]. These techniques

exhibit superior robustness and enhanced resolution ca-

pabilities compared to periodogram and annihilating filter

methods. In [7], a precise mathematical expression is

derived for frequency estimation, highlighting the inverse

relationship between error and minimum frequency sepa-

ration under medium to high signal-to-noise ratios (SNRs)

as M tends to infinity. High resolution might necessitate

a sufficiently large value of M in scenarios with non-

asymptotic conditions and low SNR.

The majority of the aforementioned HRSE techniques

are built upon uniform consecutive samples of sinusoidal

signals. Multiple strategies have emerged for estimating

frequencies from irregular samples [10]–[14]. In particular,

[12]–[14] introduces an approach centered on minimization

of atomic norms, which extends the concept of a norm

ℓ1 for the estimation of sparse vectors [15], [16]. Instead

of using all M consecutive samples of the signal, the

atomic norm-based method estimates frequencies with high

probability from O(L, logL, logM) random measurements

from available M measurements, provided that no two

frequencies are closer than 4/M [12], [13]. Though the

theoretical resolution ability of the method is four times

lower than the periodogram, in practice, the algorithm is

shown to resolve frequencies separated by 1/M . However,

these techniques have high computational complexity due

to reliance on semidefinite programming.

A potential reduction in computational burden is attain-

able through data-driven methodologies. For instance, [17]

introduced PSnet, a deep-learning-based scheme for fre-

quency estimation. Analogous to the principles behind peri-

odogram and root-MUSIC [7], the authors suggest an initial

step of learning a pseudo-spectrum from samples, followed

by frequency estimation via spectrum peak identification.

Empirical observations reveal the superiority of PSnet over

MUSIC and periodogram when the minimum frequency

separation equals 1/M . The important insight is that esti-

mating frequencies from a learned frequency representation
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(e.g., pseudo-spectrum) is more advantageous than training

a deep network to directly learn frequencies from the sam-

ples, as attempted in [18]. An enhanced version of PSnet is

proposed in [19], introducing architectural improvements

in the network and incorporating a learned estimator for

the frequency count L. These techniques employ triangular

and Gaussian kernels to construct pseudo-spectra, although

the optimal kernel selection remains an open question.

Furthermore, the impact of pseudo-spectrum discretization

on learning was not addressed. Diverse adaptations and

extensions of these approaches are presented in [20]–[27].

In all these approaches, the choice of pseudo-spectrum or

spectral representation, which is learned by the network, is

contentious both in terms of its choice during training and

its interpretability.

Several alternative learning strategies assume a grid-

based arrangement of frequencies and employ multilabel

classification to tackle the issue [28]. This “on-grid”

presumption, however, imposes limitations on resolution

capabilities. In a different direction, a subset of methods

learns denoising techniques before applying conventional

frequency estimation methods [29], [30]. These approaches

necessitate broad training across various noise levels [29]

or demand an extensive set of training samples [30]. In

a nutshell, a non-learning-based approach requires many

samples to reach a desired resolution in the presence

of noise. However, the learning-based methods are data-

hungry and non-interpretable, and the resolution is still not

below the periodogram limit.

In this paper, we adopt a novel data-driven approach for

frequency estimation from noisy measurements to achieve

high resolution while maintaining interpretability. For a

fixed resolution, the estimation error of any frequency

estimation algorithm decreases with a higher signal-to-

noise ratio (SNR) and/or an increased number of samples.

Denoising can mitigate noise effects, although it possesses

inherent limitations [2], [30]. Consequently, our focus

shifts towards enhancing the number of samples, aiming to

boost accuracy. Our proposed solution entails a learning-

based predictor that augments the number of samples by

extrapolating from a small set of noisy samples. Specifi-

cally, we predict N −M samples from M measurements,

where N > M . By leveraging the provided M samples

alongside the predicted ones, we approach the accuracy

achievable with N samples. We propose two architectures

for the learnable predictor. The first is a hybrid LSTM-CNN

model, whereas the second is realized by an Encoder-only

Transformer [31]. Unlike methods such as [17], [19]–[25],

our approach does not require the selection or design of

pseudo-spectra which may not have an interpretation in

terms of conventional Fourier spectra. Through simulations,

we show that by using M noisy measurements, we achieve

a higher resolution and lower errors for different SNRs than

the HRSE approach and the method in [19], especially with

the TF-based predictor.

The structure of the paper unfolds as follows: Section 2

defines the signal model and outlines the problem formula-

tion. In Section 3, we delve into the details of the proposed

predictor. Section 4 covers network design and simulation

results, followed by conclusions.

II. PROBLEM FORMULATION

Consider N uniform samples of a linear combination of

complex exponentials given as

x(n) =

L
∑

ℓ=1

aℓ exp(j2πfℓ n) + w(n), n = 1, · · · , N.

(1)

Here, the coefficients aℓ ∈ R represent amplitudes, and

fℓ ∈ (0, 0.5] represent normalized frequencies. The term

w(n) is additive noise, which is a zero-mean Gaussian

random variable with variance σ2, with the samples being

independent and identically distributed. The objective is to

estimate the frequencies {fℓ}
L
ℓ=1 from the measurements.

Estimation accuracy relies on the following factors: the

SNR, measured in decibels as 10 log10

(

|x(n)|2
2

Nσ2

)

, number

of measurements M , and resolution ∆f , representing the

smallest distance between any two frequencies in x(n).
Keeping SNR and resolution constant means that higher

accuracy requires a larger number of measurements. On

the other hand, for an acceptable estimation accuracy and

a given SNR, the achievable resolution is around 1/N for

HRSE methods if all the N measurements are used. When

it is expensive to gather a large number of measurements

and a subset of the measurements {x(n)}Mn=1 are available,

where M < N , the resolution decreases to 1/M .

The question is whether a resolution of 1/N lower is

achievable from M measurements. We show that this is

possible by using a learning-based approach for frequency

estimation, which will be discussed in the following sec-

tions.

III. LEARNABLE PREDICTOR

Utilizing HRSE and non-learnable techniques to estimate

frequencies from the complete set of N measurements

might yield favorable accuracy and resolution. Nonetheless,

this may not hold true in cases where only M (consec-

utive) samples are accessible. We introduce a two-step

strategy to achieve resolution closer to 1/N using the

available M measurements. In the first stage, we predict

clean samples {x(n)}Nn=M+1 based on the provided noisy

measurements {x(n)}Mn=1. The predicted samples are rep-

resented as {x̃(n)}Nn=M+1. Subsequently, we concatenate

these estimated samples with the existing ones and employ

HRSE methods to estimate the frequencies.
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Gθ

HRSE
Estimated

frequencies

Fig. 1. Schematic of the proposed frequency estimation method: The
predictor estimates the future samples from the given samples and then
concatenates with the true samples by using concatenation operation C.
Then HRSE methods are used to estimate frequencies from the samples.

In the initial phase, when noise is absent, it is possible to

achieve perfect prediction for x(n) [32]. Specifically, in the

absence of noise, for any x(n) as in (1), there exists a set of

coefficients {ck}
K
k=1 such that x(n) =

K
∑

k=1

ck x(n−k), n =

K + 1, · · · , N , where K ≥ L. In the presence of noise,

{ck}
L
k=1 are estimated using least-squares, aiming to min-

imize the error
∑N

n=L+1

∣

∣

∣
x(n)−

∑L

k=1 ck, x(n− k)
∣

∣

∣

2

.

However, this predictive approach remains susceptible to

errors in low SNR and situations with lower resolution.

Furthermore, the coefficients have to be recalculated for

different signals.

To construct a robust predictor applicable to a class

of signals, we train deep learning models to estimate

{x(n)}Nn=M+1 based on the available samples. To elab-

orate, consider the vectors xa ∈ R
M and xm ∈ R

N−M ,

representing the available first M measurements and the

last N−M samples, respectively. To be precise, let {xi}
I
i=1

represent a collection of noisy samples following the form

in (1), where frequencies and amplitudes vary among

examples. By splitting the measurements of these examples

into the initial M measurements and the remaining set, we

obtain the vectors {xa,i}
I
i=1 and {xm,i}

I
i=1. The network

parameters θ are optimized to minimize the cost function

I
∑

i=1

∥xm,i −Gθ(xa,i)∥
2
2 (2)

During inference, for any set of M noisy samples xa,

the future samples are predicted as ~xm = Gθ(xa). Then

a HRSE method is applied on the concatenated vector

[xT
a ~x

T
m]T for frequency estimation. The overall system is

shown in Fig. 1.

IV. EXPERIMENTAL DESIGN AND SIMULATION

RESULTS

In this section, we first discuss network design and data

generation. Then, we compare the proposed approach with

the existing methods.

A. Network Architecture

1) Hybrid LSTM-CNN model: The CNN-based architec-

ture of the learnable predictor combines convolutional and

recurrent neural network as shown in Fig. 2. We employ

dropout to avoid overfitting and batch-normalization is used

for stable convergence.

xa (50 noisy samples)

x̃m (100 clean predicted samples)

Conv layer (3X) (Filters=64, Kernels=5,7,9)

Bidirectional LSTM layer (units=64)

Linear projection

Fig. 2. Hybrid LSTM-CNN model’s architecture.

2) Transformer-Encoder-based model: The model ar-

chitecture is shown in Fig. 3; here, we employ batch-

normalization in intermediate steps to improve con-

vergence. Additionally, learnable positional encoding is

adapted before feeding the input to the transformer block.

xa (50 noisy samples)

Projection head

Transformer Encoder

Linear expansion and down-projection

x̃m (100 clean predicted samples)

+pos encoding

Fig. 3. Transformer model’s architecture.

B. Training Data Generation

Since the task is to improve the resolution from 1/M
to 1/N , we considered only two frequencies (L = 2) with

equal amplitudes during training and testing. Further, to

have a resolution of at least ∆f = 1/N and potentially

improve on smaller resolutions, the samples were generated

such that they had some examples with resolutions smaller

than 1/N . We generated the following six data sets to
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provide a sufficient mix of frequencies for the model to

generalize well.

• Set-1: 20000 examples were generated with minimum

resolution. For each example, f1 was chosen uni-

formly at random from the interval [0, 0.5−∆f ]. Then

the second frequency was set as f2 = f1 + 0.5∆f .

• Set-2: In this set, 20000 examples were generated with

a resolution greater than ∆f . For each example, f1
was chosen randomly as in the previous set. Then, we

selected f2 = f1+∆f+ϵ where ϵ was generated from

a uniform distribution [−(f1+∆f ), (0.5− f1−∆f )].
The distribution of ϵ ensures that |f2 − f1| ≥ ∆f .

• Set-3: This set consists of 5625 examples where both

frequencies were randomly generated from a two-

dimensional grid with a grid size ∆f . Since the

frequencies had to be limited to the range [0, 0.5], for

each frequency, the grid points were given by the set

{k∆f}
75
k=1.

• Set-4: In this set, f1 was chosen as in Set-1 or

Set-2, and then, we set the second frequency as

f2 = f1 + k∆f where k was chosen randomly from

the integer set
[

⌈(− f1
∆f

)⌉, · · · , ⌊ 0.5−f1
∆f

⌋
]

. A total of

20000 examples were generated in this set.

• Set-5: This set consists of 20000 examples in which

both f1 and f2 were chosen uniformly at random from

the interval [0, 0.5]
• Set-6: In this set, f1 was chosen from a Gaussian

distribution with a mean and standard deviation of

0.25 and restricted to the range [0, 0.5]. f2 was chosen

uniformly at random from the interval [0, 0.5]. A total

of 20000 examples were generated in this set.

Set 3 and 4 were generated to help the network to

separate frequencies separated by integer multiples of ∆f ,

which is the key in the resolution analysis. The above six

sets have 105625 possible pairs of frequencies (f1, f2).
The samples were generated for each pair of frequencies

following (1) with a1 = a2 = 1 and for N = 150. Each of

these 105625 signal samples was corrupted with noise for a

given SNR. Specifically, three independent noise instances

for each example were realized, resulting in a total of

316875 examples. We also trained different networks for

each SNR.

By keeping M = 50 (note that N = 150 in our setup),

the network was trained for 50 epochs with a batch size

of 128 in the CNN-based model and 2048 in the TF-based

model. The training loss was minimized using the Adam

optimizer with a learning rate of 0.001. A performance

comparison of the proposed algorithm through simulations

will be discussed next.

C. Simulation Results

In this section, we compared the following methods for

frequency estimation by setting N = 150 and M = 50.

0.1/150
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1/150

2/150
3/150

RESOLUTION
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(a) SNR = 5dB
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(b) SNR=15 dB
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SNR in dB

-80
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-40

-20

0

20

N
M

S
E

 i
n

 d
B

50T

150T

Deep Freq model

CNN-50T+100P

TF-50T+100P

(c) ∆f = 1/150

Fig. 4. A comparison of various methods for different resolutions at
5dB and 15dB SNR where L = 2: The proposed approach, labeled as
TF-50T+100P, has 50 dB lower error than 50T for frequency separation
equal to the resolution limit ∆f = 1/150.

• 50T: Used M = 50 noisy samples with ESPRIT [8].

• 150T: Used N = 150 noisy samples with ESPRIT [8].

• CNN-50T+100P: Used 50 true noisy (T) with 100

predicted (P) samples with ESPRIT. The predictor is

realized by CNN.

• TF-50T+100P: Same as the previous approach, but

the prediction is via the TF.

• Deep-Freq model [19]. The model is trained using the

proposed dataset

For an objective comparison, we used normalized mean-

squared error (NMSE), which was computed as

NMSE =
1
K

∑K

k=1(fk − f̃k)
2

1
K

∑K

k=1(fk)
2

, (3)

where f̃k is an estimate of the frequency fk.

In the following simulation, we examine the model

performance under varying resolution conditions for SNRs

5 dB and 15 dB. For each SNR and a given resolution,

200 test examples are generated. For each example, first,

f1 is randomly selected and then we set f2 = f1 + ∆,

where ∆ represents the desired resolution. With a limited

sample size of M = 50, the Fourier-based periodogram

method achieved a resolution threshold of 1/50 = 0.02 Hz,

whereas the full N -sample scenario yielded a resolution of

∆f = 1/N = 0.0067 Hz.

In Figs. 4(a) and (b), MSEs for various resolutions are

shown for SNRs 5 dB and 15 dB, respectively. Starting

from 50 samples, the learning-based approaches were able
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TABLE I
PERFORMANCE COMPARISON OF HRSE AND PROPOSED TF-BASED METHOD FOR 15dB SNR

Method Size
Resolution (NMSE in dB)

Relative time overhead
0.5/150 1/150 2/150 3/150

ESPRIT (50T) - 0.14 -5.63 -41.39 -51.59 0.1X

ESPRIT (150T) - -52 -65.33 -71.42 -73.21 1X

TF dim=64, FF dim=256, N=2 160k -56.2 -61.9 -65.83 -68.46 1.026X

TF dim=64, FF dim=256, N=1 110k -50.26 -53.74 -55.98 -56 1.015X

TF dim=64, FF dim=128, N=2 110k -52.26 -49.9 -57.84 -58.4 1.023X

TF dim=64, FF dim=512, N=2 259k -54.21 -60.31 -62.1 -65.54 1.032X

TF dim=64, FF dim=1024, N=2 457k -54.26 -59.34 -61.91 -64.2 1.042X

TF dim=32, FF dim=128, N=2 46k -50 -46.23 -44.32 -50.95 1.015X

to have better resolution than 50T. Among the learnable

methods, TF-50T+100P was able to achieve the same

(super)resolution ability as that of 150T. Interestingly, at

SNR 5 dB, the CNN-50T+100P and DeepFreq have lower

errors compared to 150T and TF-50T+100P for resolutions

below ∆f = 1/150. But for higher resolutions, the NMSEs

for these methods are not decreasing as rapidly as TF-

50T+100P and 150T. Additionally, the CNN-LSTM model

matches the performance of DeepFreq, indicating that these

model architectures are inherently incapable of attaining

super-resolution accuracy.

Next, we compared the methods for different SNRs

while keeping the resolution as ∆f = 1/150, and the

NMSEs are depicted in Figs. 4(c). For each SNR, 1000 test

samples were used where the frequencies f1 were picked

randomly, and then we set f2 = f1+∆f .As expected, 50T

results in the highest error, while 150T has approximately

50 dB less error at the cost of three times the number

of measurements. In comparison, learning-based methods

have significantly lower error than 50T while using the

same number of measurements. Specifically, 15 − 35 dB

lower for CNN-50T+100P and DeepFreq, and 45− 50 dB

for TF-50T+100P.

D. Analysis

1) Computational Cost: We also evaluated the compu-

tational cost of our approach in comparison to traditional

methods as shown in Table I. While our model incurs a

2.6% overhead with the same number of samples, this

increased cost is compensated by a 66% reduction in

sampling requirements. It is evident that the computational

cost of traditional HRSE methods is the main source of

latency and our proposed learning-based methods introduce

negligible overhead. Overall, the proposed learning-based

methods, especially the TF-50T+100P model, achieves

super-resolution with significantly fewer measurements,

even across various signal-to-noise ratios (SNRs).

2) Performance dependence on Model Scale: We now

present a comprehensive evaluation of the Transformer-

based model and the key design choices for accurate

and efficient prediction of future samples. The experiment

results for 15 dB SNR are reported in Table I, where TF

dim is the transformer model (hidden) dimension, FF dim

is the feedforward layer dimension, and N is the number of

transformer layers, while the important insights are valid

for other SNRs too. We observe that the feature dimension

in the Transformer Encoder is the most important factor

affecting prediction error, especially at higher resolutions.

Additionally, for a fixed value of the feature dimension,

the prediction error varies significantly with the ratio of the

dimension of the intermediate linear layer in the MLP to the

feature dimension. The best performance is achieved for the

ratio of 4, and it degrades on both sides of this value. This

is particularly important as this dimension determines the

number of parameters in the MLP layer, which constitute

the major part of the overall model size. We also note that

there is substantial performance degradation for shallower

models, suggesting that the depth of the Transformer En-

coder is essential to generate high-quality representations,

which can then be leveraged by the linear head to perform

accurate predictions. These insights allow us to achieve

super-resolution accuracy with small model sizes.

V. CONCLUSIONS

In this study, we present a novel learning-best approach

for accomplishing super-resolution frequency estimation.

Our approach involves training a model to predict future

samples in a sum of complex exponentials using a limited

sample set. By subsequently incorporating both the avail-

able and predicted samples, we successfully demonstrate

the attainment of high-resolution estimation. This algorithm
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proves valuable in scenarios where measurements come

at a premium. Our ongoing efforts are directed towards

expanding the method to predict samples from non-uniform

datasets.
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